在基于哈希的图像检索系统中,原始的变换输入通常会产生不同的代码,降低检索精度。要缓解此问题,可以在培训期间应用数据增强。然而,即使一个内容的增强样本在真实空间中相似,量化也可以在汉明空间远离它们。这导致可以阻碍培训和降低性能的表示差异。在这项工作中,我们提出了一种新型的自蒸馏散列方案,以最小化差异,同时利用增强数据的潜力。通过将弱变换样本的哈希知识转移到强大的样本,我们使哈希代码对各种变换不敏感。我们还引入了基于哈希代理的相似度学习和基于二进制交叉熵的量化损耗,以提供优质的质量哈希代码。最终,我们构建一个深度散列框架,产生鉴别性哈希代码。基准测试的广泛实验验证了我们的自蒸馏改善了现有的深度散列方法,我们的框架达到了最先进的检索结果。代码将很快发布。
translated by 谷歌翻译
监督基于深度学习的哈希和矢量量化是实现快速和大规模的图像检索系统。通过完全利用标签注释,与传统方法相比,它们正在实现出色的检索性能。但是,令人生心的是为大量训练数据准确地分配标签,并且还有注释过程易于出错。为了解决这些问题,我们提出了第一款深度无监督的图像检索方法被称为自我监督的产品量化(SPQ)网络,该方法是无标签和以自我监督的方式培训的。我们通过比较单独转换的图像(视图)来设计一个交叉量化的对比学习策略,该横向学习策略共同学习码字和深视觉描述符。我们的方法分析了图像内容以提取描述性功能,允许我们理解图像表示以准确检索。通过对基准进行广泛的实验,我们证明该方法即使没有监督预测,也会产生最先进的结果。
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
多人在线战场(MOBA)是最成功的游戏类型之一。像英雄联盟这样的MOBA游戏具有竞争性环境,玩家竞争他们的排名。在大多数MOBA游戏中,玩家的排名取决于比赛结果(获胜或输)。由于团队合作的本质,这似乎很自然,但是从某种意义上说,这是不公平的,因为在损失的情况下,付出很多努力的球员失去了排名胜利。为了减少基于团队的排名系统的副作用并公正地评估球员的表现,我们提出了一种新颖的嵌入模型,该模型将球员的动作转换为基于动作对球队胜利的各自贡献的定量分数。我们的模型是使用基于序列的深度学习模型构建的,其新型损失功能在团队比赛中起作用。基于序列的深度学习模型处理从游戏开始到团队游戏中的动作序列,使用GRU单元从上一步和当前输入选择性地采用隐藏状态。损失功能旨在帮助动作得分反映球队的最终成绩和成功。我们表明,我们的模型可以公平地评估玩家的个人表现,并分析玩家各自动作的贡献。
translated by 谷歌翻译
我们提出了CPO,这是一种快速且强大的算法,该算法与可能包含更改的场景的3D点云相对于2D全景图。为了稳健地处理场景的变化,我们的方法偏离了传统的特征点匹配,并着重于全景图像提供的空间上下文。具体而言,我们建议使用得分图提出有效的颜色直方图生成和随后的鲁棒定位。通过利用球形投影的唯一模棱两可,我们提出了大量相机姿势的非常快的颜色直方图生成,而无需明确渲染所有候选姿势的图像。我们将全景云和点云的区域一致性作为2D/3D分数图,并使用它们来称量输入颜色值以进一步提高鲁棒性。加权颜色分布很快找到了良好的初始姿势,并实现了基于梯度的优化的稳定收敛。 CPO是轻量级的,在所有测试的场景中都能实现有效的本地化,尽管场景变化,重复性结构或无特征区域都显示出稳定的性能,这是带有透视摄像头视觉定位的典型挑战。
translated by 谷歌翻译
虽然工业互联网的东西已经增加了工业设备中永久安装的传感器数量,但由于在石化工业中非常大的植物中的传感器或稀疏密度,覆盖率将存在差距。现代应急响应操作开始使用具有能够将传感器机器人丢弃到精确位置的小型无人机系统(SUAS)。 SUA可以提供长期持续监控,即航空无人机无法提供。尽管这些资产的成本相对较低,但是选择哪个机器人传感系统部署在紧急响应期间复杂的植物环境中的工业过程中的哪一部分仍然具有挑战性。本文介绍了一种优化应急传感器部署作为实现机器人在灾区响应的初步步骤的框架。 AI技术(长期内存,1维卷积神经网络,逻辑回归和随机林)识别传感器最有价值的区域,而无需人类进入潜在的危险区域。在描述的情况下,优化的成本函数考虑了假阳性和假阴性错误的成本。减缓的决定包括实施维修或关闭工厂。信息(EVI)的预期值用于识别要部署的最有价值的类型和物理传感器的位置,以增加传感器网络的决策分析值。该方法应用于使用化学植物的田纳西州伊士曼流程数据集的案例研究,我们讨论了我们对植物紧急情况和弹性情景中传感器的操作,分配和决策的影响的影响。
translated by 谷歌翻译
We propose a new causal inference framework to learn causal effects from multiple, decentralized data sources in a federated setting. We introduce an adaptive transfer algorithm that learns the similarities among the data sources by utilizing Random Fourier Features to disentangle the loss function into multiple components, each of which is associated with a data source. The data sources may have different distributions; the causal effects are independently and systematically incorporated. The proposed method estimates the similarities among the sources through transfer coefficients, and hence requiring no prior information about the similarity measures. The heterogeneous causal effects can be estimated with no sharing of the raw training data among the sources, thus minimizing the risk of privacy leak. We also provide minimax lower bounds to assess the quality of the parameters learned from the disparate sources. The proposed method is empirically shown to outperform the baselines on decentralized data sources with dissimilar distributions.
translated by 谷歌翻译
Learning to predict masked tokens in a sequence has been shown to be a powerful pretraining objective for large-scale language models. After training, such masked language models can provide distributions of tokens conditioned on bidirectional context. In this short draft, we show that such bidirectional conditionals often demonstrate considerable inconsistencies, i.e., they can not be derived from a coherent joint distribution when considered together. We empirically quantify such inconsistencies in the simple scenario of bigrams for two common styles of masked language models: T5-style and BERT-style. For example, we show that T5 models often confuse its own preference regarding two similar bigrams. Such inconsistencies may represent a theoretical pitfall for the research work on sampling sequences based on the bidirectional conditionals learned by BERT-style MLMs. This phenomenon also means that T5-style MLMs capable of infilling will generate discrepant results depending on how much masking is given, which may represent a particular trust issue.
translated by 谷歌翻译
Inspired by the recent success of Transformers for Natural Language Processing and vision Transformer for Computer Vision, many researchers in the medical imaging community have flocked to Transformer-based networks for various main stream medical tasks such as classification, segmentation, and estimation. In this study, we analyze, two recently published Transformer-based network architectures for the task of multimodal head-and-tumor segmentation and compare their performance to the de facto standard 3D segmentation network - the nnU-Net. Our results showed that modeling long-range dependencies may be helpful in cases where large structures are present and/or large field of view is needed. However, for small structures such as head-and-neck tumor, the convolution-based U-Net architecture seemed to perform well, especially when training dataset is small and computational resource is limited.
translated by 谷歌翻译
In recent years, generative models have undergone significant advancement due to the success of diffusion models. The success of these models is often attributed to their use of guidance techniques, such as classifier and classifier-free methods, which provides effective mechanisms to trade-off between fidelity and diversity. However, these methods are not capable of guiding a generated image to be aware of its geometric configuration, e.g., depth, which hinders the application of diffusion models to areas that require a certain level of depth awareness. To address this limitation, we propose a novel guidance approach for diffusion models that uses estimated depth information derived from the rich intermediate representations of diffusion models. To do this, we first present a label-efficient depth estimation framework using the internal representations of diffusion models. At the sampling phase, we utilize two guidance techniques to self-condition the generated image using the estimated depth map, the first of which uses pseudo-labeling, and the subsequent one uses a depth-domain diffusion prior. Experiments and extensive ablation studies demonstrate the effectiveness of our method in guiding the diffusion models toward geometrically plausible image generation. Project page is available at https://ku-cvlab.github.io/DAG/.
translated by 谷歌翻译